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Abstract. We review long-range Coulomb interactions in systems consisting of periodically
repeated replicas of identical unit cells containing a net dipole moment. Cases of both infinite
and large finite samples of arbitrary shape are considered. The general result due to Smith (1981
Proc. Roy. Soc. Lond.A 375475) for a large finite sample is considerably simplified. This allowed
us to reveal further its physical meaning. We show that extra shape-dependent terms both in the
electrostatic potential and energy have a pure macroscopic origin. We also suggest an alternative
derivation for the Coulomb potential of a large finite sample of arbitrary shape which is believed
to be simpler than the original one due to Smith.

1. Introduction

Long-range Coulomb interaction plays a dominant role in almost every condensed matter
system and has been substantially discussed in the literature (see, e.g. [1–12]; of course, this
list is by no means complete). Periodic boundary conditions (PBC) have become a powerful
tool in simulating extended systems when a big but finite portion of the system (a simulation
cell) is periodically repeated in three-dimensional (3D) space. PBC have been extensively used
in solid-state physics, in particular for electronic band structure calculations and for molecular
dynamics simulations [13–15], as well as for quantum Monte Carlo simulations of crystals
[11].

The fundamental difficulty with long-range Coulomb interactions forinfinite systems
arises due to theirconditionalconvergence, i.e. the result of the summation in the corresponding
infinite series depends on the order of terms in the summation. Therefore, when using various
methods for summing up the series one can obtain different answers. Of course, forfinite
samples the order of summation does not matter. Note also that the potential is defined up to
an arbitrary constant so that only its variation across the cell is important.

Starting from Ewald [1], most authors (see, e.g. [2, 16]) have been preoccupied with
speeding up the convergence of the series in numerical calculations and therefore have not
paid sufficient attention to the fact of conditional convergence. It is likely that the difference
between theinfiniteandfinitesamples was not understood at this time. Redlack and Grindlay
[3] were the first authors to notice the importance of looking carefully at the Coulomb series
from a mathematical point of view. They recognized that forinfinite samples (true PBC) the
conditional convergence may result only in an arbitrary choice of the physically insignificant
constant term in the periodic potential, the latter being chosen in, for example, Ewald form [1]
(note that two periodical solutions of thesamePoisson equation may differ only by a constant
which is the only periodical solution of the Laplace equation). However, they showed that if the
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sample isfinite and consists of identical replicas of the same unit cell, then the total potential
consists of intrinsic and extrinsic contributions. Theintrinsic part is periodic and is the same as
for the infinite sample (e.g. the Ewald potential). However, theextrinsicpart depends explicitly
on the sampleshapeanddipole momentin the unit cell. Redlack and Grindlay also gave the
detailed solution for a sample of the ellipsoidal shape. The conditional convergence of the
Madelung series was also studied in [4] for a special case of the zero cell dipole moment;
the authors arrived at conclusions similar to those of Redlack and Grindlay. In addition, they
derived an explicit expression for the extrinsic part of the potential for anarbitrary shapeof a
finite sample, which in this particular case of zero dipole moment is a constant. A spherical
sample with a net dipole moment in the cell was then studied in [5] (see also the recent work
in [10, 11, 17]). It was found that in this case the extrinsic contribution islinear with r and is
given by the well known Lorenz term,φext (r) = (4π/3)p · r, wherep is the dipole moment
per unit volume. As one can see, the periodic symmetry is broken by this term. This is not
surprising, however, due to the fact that this term has a simple macroscopic meaning as an
electrostatic field inside a uniformly polarized insulating sphere (see e.g., [11, 18]).

The general case of a finite sample of arbitrary shape and non-zero dipole moment in the
unit cell was considered for the first time in [6, 7]. It was shown that the extrinsic contribution to
the total electrostatic energy of the system is proportional to the square of the dipole moment
and is given as a six-dimensional integral containing integration over the sample volume.
This last integration brings about the implicit dependence on the sample shape. The whole
contribution, however, does not depend on the sample volume. It was also clearly stated in
[7] that the surface relaxation effects would be likely to completely suppress the extrinsic part
of the potential leading to substantial gain in the Coulomb energy of the system. Although
the importance of this general work seems to be obvious, these papers have remained largely
unnoticed (see, e.g., recent studies in [10–12]). This is probably due to a quite cumbersome and
sophisticated method used in [6, 7] to consider the Coulomb series. Another reason is that the
general result derived in the cited papers looks very complicated and not transparent enough to
make the comparison with simple macroscopic electrostatics feasible. As a result, these papers
are not properly understood and remain underestimated by the scientific community. Instead,
a less fundamental paper by the same authors [5] is more frequently cited in the general context
of arbitrary sample shape although in this paper only one particular case of a spherical shape
is considered.

Another confusion which has become commonplace in the literature (see, e.g., [10, 11])
is concerned with the fact that the results (usually those of [5]) derived for a large finite
sample are sometimes used to calculate the Coulomb series in true PBC, although the latter
corresponds to theinfinite sample. This results in unjustified attempts to apply the extrinsic
part of the electrostatic potential alongside the Ewald part in the PBC calculations. As has
already been mentioned above, both the electrostatic potential and the energy differ in the cases
of finite and infinite samples if there is a net dipole moment in the cell (see [3, 6, 7]): there
are additional shape-dependent terms in the case of a large finite sample although theperiodic
Ewald’s expression for the potential isvalid in the case of PBC.

This controversy in the literature inspired us to consider the summation of conditionally
convergent Coulomb series once again. We review in section 2 the main results of [6, 7]
and show that, after some additional algebra, the extra term expressed there as a six-
dimensional integral can be rearranged into a much more simple form given by a 3D integral.
This transformation makes it possible to perform a direct comparison with macroscopic
electrostatics. It allows us to demonstrate in the general case ofarbitrary shape that this extra
term in the potential and energy has a pure macroscopic origin. Although thisphysicalfact
should be clear from the previous studies of [3, 5, 7] (see also [11]), it has been demonstrated
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explicitly only for the spherical shape. In addition, in section 3 we suggest another derivation
for the electrostatic potential of a large finite sample well inside it, which results directly in the
simplified form of the extra terms. We believe that our derivation is simpler than that suggested
in [6, 7] and therefore it is worth reproducing here for completeness. Finally, conclusions are
drawn in section 4.

2. Analysis of electrostatic potential and energy of a large finite sample

Let us consider a large finite sampleP of arbitrary shape consisting of identical replicas of
a unit cell with distributed point chargesqs . We also assume that there is a non-zero dipole
momentP in every cell, associated with these charges. To calculate the electrostatic potential
at an arbitrary pointr inside the body of the sample, we first consider a potential due to a
periodic lattice of unit point charges confined in a finite sampleP . It was rigorously shown in
[6, 7] that the potential is given as (up to a constant)

φ(N)(r) =
∑
l∈P

1

|r + Rl| = φEw(r) − π

vc

rαJαβrβ (1)

Jαβ = 2

π3

∫
(all)

dw

w2
wαwβ

( ∫
P

e2iw·x dx

)
(2)

where the summation is performed with respect to all such direct lattice vectorsRl which are
inside the volume ofP ,

φEw(r) =
∑

l

erfc(G|r − Rl|)
|r − Rl| +

4π

vc

∑
g 6=0

1

R2
g

e−R2
g/4G2

e−iRg ·r (3)

is the Ewald potential (note that thel = 0 term in the direct lattice summation in equation (3) is
to be replaced by−2G

√
π if r = 0),Rg is a reciprocal lattice vector,vc is the unit cell volume

andN is the number of unit cells in the sampleP . The first integral in equation (2) (overw)
is taken over the whole space while the second integral (overx) is taken over the volume of
the sample. This result is correct up to terms O(1/N) and therefore represents an asymptotic
expansion of the total potential for largeN . Note that hereafter the summation convention for
the Cartesian componentsα, β of vectors and tensors is implied. In equation (1) the Ewald part
represents the intrinsic part of the potential while the correction term,−(π/vc)rαJαβrβ , gives
the shape-dependent extrinsic part with shape dependence coming explicitly from the second
(overx) integral. Note also that the integralJαβ doesnot depend on the samplesize(this is
easily checked by making a substitutionx → λx in the second integral in equation (2)). The
electrostatic potential due to all chargesqs in the unit cell positioned at vectorsXs in every
cell is then given as [7]

φ
(N)
tot (r) =

∑
s

qsφ
(N)(Xs − r) =

∑
s

qsφEw(Xs − r) − π

3vc

Jαβ(Qαβ + δαβQ0 − 6rαPβ) (4)

whereQ0 = ∑
s qsX

2
s is the cellspheropole(see [8, 9]), whilePα = ∑

s qsXsα andQαβ =∑
s qs(3XsαXsβ −δαβX2

s ) are the unit celldipoleandquadrupolemoments, respectively. Note
that the quadratic inr terms disappeared from the total potential due to electro-neutrality of the
cell,

∑
s qs = 0. Several particular cases of the sample shape have been considered in [6, 7].

For instance, in the case of spherical and cube shapes,Jαβ = 2
3δαβ . Finally, the electrostatic

energy (per unit cell) of the sample is given as [6, 7]

E(N) = 1

2

∑
ss ′

qsqs ′φ
(N)
tot (Xs − Xs ′) = E

(N)
Ew + PαJαβPβ (5)
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whereE
(N)
Ew is the usual Ewald energy of point charges. This result is also correct up to O

(1/N).
The results contained in equations (4) and (5) are very general. They show clearly that

the potential due to a large finite sample contains (apart from the shape-dependent constant
terms) a term linear withr corresponding to a constant macroscopic electrostatic field across
the whole sample. As a result, the total energy also gains an additional shape-dependent term
which vanishes only if there is no net dipole moment in the cell.

+

+
+
+++++

++

Figure 1. A finite crystalline sample with a non-zero dipole moment periodically repeated in every
unit cell (see text).

In order to gain a deeper insight into the results above, we first have to simplify the
correction term. Both in the potential, equation (4), and in the energy, equation (5), it is
represented via a complicated six-dimensional integral,Jαβ , equation (2). We will show now
that in fact it can be transformed into a 3D integral which would allow us to give a transparent
physical meaning to the correction term. To this end, let us consider equation (2). We first
split the integral overx into two integrals: over a sphere around the origin,P1, and over the
remainder of the volume,P2. The spherical volumeP1 contributes2

3δαβ to Jαβ (see above).
To calculate the contribution from the volumeP2 we note thatx 6= 0 there by the construction.
This allows us to interchange the two integrals in equation (2). Using also the identity∫

(all)

dw

w2
wαwβe2iw·x = − ∂2

4∂xα∂xβ

∫
(all)

dw

w2
e2iw·x = − ∂2

4∂xα∂xβ

π2

|x|
we finally obtain the following simple result

Jαβ = 2

3
δαβ +

1

2π
T̄αβ (6)

where

T̄αβ =
∫

P

Tαβ(x) dx (7)

is a form factor introduced in [4] withTαβ(x) = (δαβ/x3) − (3xαxβ/x5) being the dipole
tensor. Note that the form factor does not depend on the volume of the sampleP and therefore
depends only on its shape, as is expected. Also, the integral is equal to zero for spherical
volumes due to symmetry (the dipole tensor is proportional to the real spherical polynomials
Y2m(x̂)). For the same reason, there is no singularity around the origin as one can always cut
out a sphere aroundx = 0 which gives a zero contribution. For other shapes ofP the central
spherical part gives a zero contribution and therefore only the part close to the sample surface
may contribute to the integral in equation (7). Therefore, only that part of the sample which is
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near or at the surface contributes to the form factor thereby representing puresurfaceeffects.
Some properties of the form factor are considered in the appendix.

Our new expression for the correction term is much simpler than the original one,
equation (2), since it is expressed only as a simple 3D integral. Another advantage of the
transformed expression (6) is that it allows for a very simple physical interpretation of the total
electrostatic potential. Indeed, we first use equation (6) in (4), and obtain

φ
(N)
tot (r) =

∑
s

qsφEw(Xs − r) − 1

6vc

QαβT̄αβ − 2π

3vc

Q0 +
4π

3vc

P · r +
1

vc

rαPβT̄αβ. (8)

Note that the first two constant correction terms above (after the Ewald contribution) were
derived for the first time in [4].

Let us now consider a large macroscopic sample of arbitrary shape with a uniformly
distributed dipole momentp = P /vc per unit volume as depicted in figure 1. We notice that
both the Ewald potential (the first term in equation (8)) andφ

(N)
tot (r) satisfy the same Poisson

equation since the correction linear withr obviously satisfies the Laplace equation. To choose
the right solution, one has to consider carefully the corresponding boundary conditions for the
Laplace equation. If we have a finite (although may be very large) sample of the crystalline
material with identical dipole moments in each unit cell, then one can imagine that a charge
of one sign is accumulated on one side of the sample (towards one end of the dipoles) and
that a charge of opposite sign is accumulated on the other side (at the other end of the dipoles)
as shown in figure 1. This system behaves as acapacitorand the appearance of the constant
electric field (or the linear contribution to the Ewald potential) which depends on the capacitor
geometry(the shape of the sample) is physically reasonable. One can therefore expect that the
linear shape-dependent part of the electrostatic potential can be derived independently using
a classical consideration. To this end, let us calculate the macroscopic electrostatic potential
well inside the sample as

φmacr (r) =
∫

P

p · (r − x)

|r − x|3 dx =
∫

P

pαeα(r − x) dx.

This integral is calculated in the following way. First of all, we cut out a sphere of the largest
possible radiusR inside our sample and consider the potential at an arbitrary pointr well
inside the sphere. The integral is split into two contributions: from the sphereP1 and from
the remainderP2 of P . The contribution from the sphere is well known from undergraduate
electrostatics and can be easily calculated by transforming the volume integral into a surface
integral with respect to the functionp/|r − x| and expanding 1/|r − x| in spherical functions
Ylm(x̂). The result is the Lorenz potential(4π/3)p · r. To calculate the integral over the rest
of the volume, we make use of the fact that the pointr (which is well inside the sphere) is
far away from any integration pointx ∈ P2 (which is outside), i.e.|r| � |x|. Therefore, we
expand the functioneα(r − x) in a Taylor series with respect tor

eα(r − x) = −eα(x) + Tαβ(x)rβ + O(r2)

and then integrate it with respect tox ∈ P2. Since the functionseα(x) and Tαβ(x) are
proportional to the corresponding spherical functions, the integration can be extended to include
the spherical volume as well since the contribution from it is zero anyway. Finally, one has

φmacro(r) = −pα

∫
P

eα(x) dx +
4π

3
p · r + pαrβ

∫
P

Tαβ(x) dx + O(r2). (9)

One can immediately recognize that, apart from physically insignificant constant terms, the
macroscopic potentialφmacr (r) is in fact identical to the shape-dependent correction potential
in equation (8). This means therefore that the correction terms have a pure macroscopic origin
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and correspond to the macroscopic potential due to a uniformly distributed dipole moment in
the large finite sample. Note that the Ewald potential averages to a constant (which does not
depend on the charge distribution) when integrated over any unit cell (see, e.g., [17]) so that
themacroscopicelectrostatic field originates exclusively from the extrinsic potential as given
by equation (9), i.e.

(εmacro)β = − ∂

∂rβ

φmacro(r) = −4π

3
pβ − pαT̄αβ + O(r). (10)

If we use equation (6) in the energy expression, (5), we will get the following expression
for the total electrostatic energy per cell

E(N) = E
(N)
Ew +

2π

3vc

P 2 +
1

2vc

PαT̄αβPβ (11)

which contains the Ewald part and two correction terms which vanish ifP = 0. Note that
the first correction term is present foranyshape of the finite sample whereas the second one
originates from the non-symmetric part of the sampleP near its surface and therefore represents
a puresurfaceeffect. Finally, we note that it is straightforward to generalize the expressions
given above for an arbitrary charge distributionρ(r). We do not give them here to save space.

A completely independent derivation for the potential of equation (8) well inside a large
finite sample of arbitrary shape is given in the next section for completeness. We believe
that this derivation is simpler than the original one suggested in [6, 7] and therefore is worth
reproducing here.

3. Alternative derivation of the potential well inside the body of a large finite sample

The derivation which is given here is based essentially on the ideas of [4]. Consider afinite
sample of a crystal consisting ofN unit cells. The electrostatic potential at an arbitrary point
r well inside the sample is given by

φ(N)(r) =
∑

s

qs

∑
l∈P

erfc(G|r − Rls |)
|r − Rls | +

∑
s

qs

2√
π

∫ G

ε

( ∑
l∈P

e−t2|r−Rls |2
)

dt + φ
(N)
ext (r)

(12)

where we have used the identity

1

x
= erfc(Gx) + erf(Gx)

x
= erfc(Gx)

x
+

2√
π

∫ ε

0
e−t2x2

dt +
2√
π

∫ G

ε

e−t2x2
dt

and

φ
(N)
ext (r) = 2√

π

∑
l∈P

∑
s

qs

∫ ε

0
e−t2|r−Rls |2dt. (13)

HereG is an arbitrary positive constant (Ewald’s parameter) andε > 0 is some small positive
constant which will tend to zero at the end of the calculation. The first two terms in equation (12)
are absolutely converging series so that the summation can be extended over the infinite lattice
(N → ∞). As the integrand in the second term is a periodic function with respect to the lattice
translations,Rl , it can be expanded into a Fourier series, so that one has

φ(N)(r) =
∑

s

qsφEw(Xs − r) + φ
(N)
ext (r) (14)
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whereφ
(N)
ext (r) appears as the correction term (extrinsic potential) to be calculated in the limit

of ε → +0 for largeN . Making the substitutionλ = t |r − Rl|, the integral is transformed
into

φ
(N)
ext (r) = 2√

π

∑
l∈P

∑
s

qs

|r − Rl|
∫ ε|r−Rl |

0
e−λ2

e−σlsλ
2
dλ (15)

with σls = (X2
s +2Xs ·(Rl −r))|r−Rl|−2. Let us now expand the exponential term, e−σlsλ

2
, in

power series with respect toσlsλ
2. Due to electro-neutrality of the cell, the very first term will

vanish. Other terms in the expansion contain various inverse powers of|r − Rl|. However,
it can be recognized that only a few terms will contribute in equation (15). For example, the
lattice summation

∑
l |r − Rl|−n

∫ ε|r−Rl |
0 e−λ2

λm dλ for anyn > 4 and any positive integer

m can be bounded from above by the series(
∫ ∞

0 e−λ2
λm dλ)

∑
l |r − Rl|−n, which converges

absolutely and uniformly for anyε > 0. This means that theε → +0 limit can be applied to
every term in the summation and we see that all such terms will vanish. Similar consideration
is applied to other types of terms. Finally, only three terms will survive in the Taylor expansion
of equation (15) and one obtains

φ
(N)
ext (r) = 2√

π

N∑
l=1

{−Q0ξ(|r − Rl|) − 2Pαζα(r − Rl) + 2Q̃αβχαβ(r − Rl)} (16)

whereQ̃αβ = 1
3(Qαβ + δαβQ0). It is implied that the pointr in equation (16) lies in the

zero cell. The following functions have been introduced:ξ(x) = x−3
∫ εx

0 e−λ2
λ2 dλ and

ζα(x) = xαξ(x); in addition,χαβ(x) = (xαxβ/2x2)(3ξ(x) − ε3e−ε2x2
). Noting that these

functions are well defined aroundx = 0 (this is easily checked by the substitutionλ → λ/x),
let us expand them around some pointx in the zero cell and then sum overl ∈ P . For example,∑

l∈P

ξ(|r − Rl|) =
∑
l∈P

ξ(|Rl + x|) − (r + x)α
∑
l∈P

ξ ′
α(|Rl + x|) + · · · . (17)

The first derivativeξ ′
α(|Rl + x|) contains terms which are either exponential (∝ e−ε2|Rl+x|2)

or contain|Rl + x|−n with n > 4 which, as has been explained above, ensure absolute and
uniform convergence of the corresponding series; these terms tend to zero in theε → +0 limit.
And so are the other terms (not shown explicitly in equation (17)) in the last expansion which
contain higher derivatives of the functionξ . Thus, integrating both sides of equation (17) with
respect tox, we have in theε → +0 limit∑

l∈P

ξ(|r − Rl|) → 1

vc

∑
l∈P

∫
cell

ξ(|Rl + x|) dx = 1

vc

∫
P

ξ(x) dx. (18)

Similar analysis shows that in theε → +0 limit∑
l∈P

χαβ(r − Rl) → 1

vc

∫
P

χαβ(x) dx. (19)

Therefore, the first and the third lattice summations on the right-hand side of equation (16)
given by (18) and (19), respectively, are constants represented as volume integrals (cf. [4]). In
the Taylor expansion ofζα(r −Rl) aroundx, however, one also has to keep the first derivative
term∑
l∈P

ζα(r − Rl) → 1

vc

∫
P

ζα(x) dx − 1

vc

∑
l∈P

∫
cell

(rβ + xβ) ζ ′
αβ(Rl + x) dx (20)

where

ζ ′
αβ(x) = ∂

∂xβ

ζα(x) = Tαβ(x)ξ(x)x3 + ε3xαxβ

x2
e−ε2x2

.
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The last term in equation (20) consists of two terms. The first one, containingrβ , is transformed
into an integral with respect to the volumeP as we did above in other cases. The second
(constant) term containingxβ can always be ensured to be zero by choosing the unit cell in
the form of a parallelepiped or Wigner–Seitz cell (both contain the centre of inversion) and
assuming that there is always translation−Rl for every vectorRl . Hence, the expression in
equation (20) takes the form∑

l∈P

ζα(r − Rl) → 1

vc

∫
P

ζα(x) dx − rβ

vc

∫
P

ζ ′
αβ(x) dx. (21)

Collecting all terms together in equation (16), we have

φ
(N)
ext (r) = 2√

πvc

∫
P

[
− x3

3
QαβTαβ(x)ξ(x) − ε3xαxβ

x2
e−ε2x2

Q̃αβ

−2Pαζα(x) + 2Pαrβζ ′
αβ(x)

]
dx. (22)

Now we have to deal with all of the four terms above. Consider the first term containing
the function x3ξ(x) = (

√
π/4) − f (εx) where f (y) = ∫ ∞

y
e−λ2

λ2 dλ is a rapidly
decaying function ofy. Therefore, the volume integral with this part,

∫
P

Tαβ(x)f (εx) dx,
in equation (22) can be replaced (in theN → ∞ limit) by the volume integral with respect
to the whole space and it appears to be equal to zero by symmetry due to angular integration.
Thus, the first term in equation (22) results in−(1/6vc)QαβT̄αβ .

The second term in equation (22) contains the exponential which cuts off the effect of the
boundary of the volumeP . Therefore, as above, we can extend the integration over the whole
volume, make the substitutionεx → x and finally use the symmetry. As a result, one has the
following contribution:

−Q̃αβ

2√
πvc

∫
(all)

xαxβ

x2
e−x2

dx = −δαβQ̃αβ

2

3
√

πvc

∫
e−x2

dx = − 2π

3vc

Q0. (23)

The third term in equation (22) is transformed similarly,

− 4Pα√
πvc

∫
P

ζα(x) dx → − 4Pα√
πvc

∫
P

xα

x3

√
π

4
dx → −Pα

vc

∫
P

eα(x) dx = −Pα

vc

ēα (24)

whereeα(x) = xα/x3 is the electrostatic field of a point charge. Apart from high-symmetry
cases in which the integralēα = 0, it depends on the samplevolumeV asV 1/3. However, this
is a constant term which we have every right to ignore here.

A similar derivation for the fourth term in equation (22) gives

4Pαrβ√
πvc

∫
P

ζ ′
αβ(x) dx → 4π

3vc

P · r +
1

vc

PαT̄αβrβ. (25)

Collecting all contributions together in equation (22) one recovers the correction term of
equation (8) of the previous section.

4. Conclusions

In this paper we have considered long-range interactions in crystalline systems consisting of an
arbitrary neutral charge distribution periodically repeated in 3D space. Both the electrostatic
potential and the electrostatic energy are discussed in the context ofinfiniteandfinitesamples,
and we have emphasized once again the importance of distinguishing between these two cases.
The previous work by Smith and Perram [6, 7] is re-examined and a new expression for the
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correction term to the potential (the extrinsic contribution) of a finite sample of arbitrary
shape has been derived which is much simpler than the original one suggested in [6, 7]. This
modification has allowed us to shed more light on the physical meaning of the extrinsic
potential. We have shown that in the general case ofarbitrary sample shape the extrinsic
potential has a pure macroscopic origin and represents a classical electrostatic potential due to a
uniformly polarized sample well inside it. This result can be easily understood as the uniformly
polarized sample manifests itself as a capacitor of a certain geometry. Also, we have suggested
an alternative derivation for the electrostatic energy and potential of a finite sample of arbitrary
shape which, we believe, is less cumbersome than the original derivation suggested in [6, 7].

In a real experiment any sample has a certain finite size and shape. One can therefore ask
the question ‘Which model is closer to physical reality, the model of a finite or of an infinite
sample?’ This is important for the understanding of whether results of PBC calculations can be
directly compared with experimental results and whether one has to use the correction terms in
the energy in PBC calculations. In order to answer this question, it is relevant to mention that
both models are just specific approximations to the physical reality which is lying somewhere
in between. Indeed, if there is a dipole moment in the cell which is periodically repeated inside
some large finite volume, then the arising macroscopic fieldεmacro would substantially increase
the internal Coulomb energy of the system by(1/8π)

∫
P

ε2
macro dV = (ε2

macro/8π)V , where
V is the sample volume. Therefore, it is energetically favourable for the surface atoms to relax
in order to compensate for this large positive energy. There will also be substantial electronic
redistribution at the surface in order to create an electrostatic field in the direction opposite to
that ofεmacro. This effect has indeed been observed in a number of theoretical studies of polar
surfaces [19, 20]. Some mechanisms of stabilization of polar surfaces are considered in [21].
This effect was also mentioned in [7]. Therefore, as the surface provides some ‘compensating’
mechanism to suppress the effect of the macroscopic field, the model of periodically repeated
identicalcells confined in a finite (although may be very large) volume will never be correct so
that the correction terms have to be either removed altogether (which would correspond to true
PBC) or substantially damped (partial surface effects). The extent to which the surface effects
are suppressed may also depend on the experimental conditions (e.g. the sample preparation)
so that care is needed when making a comparison of theory and experiment. We believe that in
the correct calculation of the system in which there is a net dipole moment in the cell the surface
relaxation effects should be accounted for using direct minimization of the total energy of the
entiresample, which is a formidable task. This is especially true for the case of nanoclusters.
It is probable that complete compensation and therefore PBC are the closest approximations to
reality. Note also that artificial ‘compensating’ mechanisms designed to eliminate the effect of
the macroscopic field in PBC calculations have also been suggested: for example, in [11, 17]
a sample was surrounded by a metal which screens out any macroscopic electrostatic field.
A similar idea was suggested in [22] where the dipole moment in the slab calculations was
compensated by an artificial electrostatic field of the opposite direction by placing a planar
dipole layer in the middle of the vacuum region. Finally, in a number of studies (see, e.g.,
[23]) simulations are discussed in which a finite sample is surrounded by a continuum with
some dielectric constant treated as a parameter (for a general discussion of simulations with
the shape-dependent term see [24, 25]).

Appendix

To calculate the integral̄Tαβ = ∫
P

Tαβ(x) dx for a finite sample with a specific shape of
interest, use can be made of the fact thatTαβ(x) = −e(α)∇(e(β)∇(1/|x|)), e(α) being a unit
vector along the axisα, so that the volume integral is transformed into an integral over the
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surface of the sample as follows

T̄αβ = −
∫ ∫

S

nβ

(
e(α)∇ 1

|x|
)

dS

wheren = (nx, ny, nz) is the unit vector of the surface normal. In doing so, one has to
eliminate the singularity aroundx = 0 by cutting off a sphere of some radiusR around the
origin. The result will not depend onR and the surface integration above is performed over
the inner spherical surface as well. We also note thatT̄αα = 0 due to the familiar ‘sum-rule’
property of the dipole tensor itself,Tαα(r) = 0. For a spherical volume the integral is equal
to zero by symmetry as mentioned in the text. In the case of a cube,T̄αβ = δαβT̄ , and again
the integral is equal to zero due to the sum rule above. The same result can be recovered for
any high-symmetry shape (such as diamond). In cases of lower symmetry the integral is not
equal to zero.
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